COLUMBIA VAGELOS COLLEGE OF Physicians & Surgeons

PROGRAM FOR EDUCATION IN GLOBAL AND POPULATION HEALTH

TABLES

Assessing Cardiovascular Surgical Outcomes in Hemiarch, Total Arch, & **Zone 2 Aortic Replacements: A Single-Center Experience**

Adedeii Adenivi - Vagelos College of Physicians & Surgeons, Class of 2023 Mentors: Hiroo Takayama, MD, PhD and Anette Wu MD, MPH, PhD

Research Aim: To investigate the effect of zone 2 repair on postoperative outcomes.

BACKGROUND

Traditionally, aortic arch reconstructions typically involved either distal repairs by hemiarch anastomosis or a more aggressive approach including the more distal aortic arch. However, Zone 2 arch replacement, advocated by a number of surgeons, offers numerous potential advantages (Appoo et al.).

Assessment of the three treatment groups would provide key insights for determining best practice in aortic arch repair.

DEFINITIONS

Zanotti et al

- Hemiarch = distal anastomosis in zone 0 without aortic cross clamp

Zone 2 = distal anastomosis in zone 2 (between LCA and LSA)

- Total = distal anastomosis in zone 3 (beyond LSA)

Table 1: Patient's Profile and	l Intraoperat	ive Report					
	Hemiarch	Total	Zone 2	Hemiarch V Tatal	Hemiarch V Zone 2	Total V Zone 2	
	466	275	43		p-values		
Baseline characteristics							
Male, n (%)	342 (73.4)	191 (69.5)	27 (62.8)	0.249	0.492	0.925	
Age, years	63±14	63±14	62±13	0.949	0.534	0.554	
Preoperative complications, n (%)							
Hyperlipidemia	230 (49.4)	142 (51.6)	16 (50.0)	0.549	0.879	0.889	
Diabetes	55 (11.8)	39 (14.2)	5 (15.6)	0.353	0.421	0.924	
Smoking History							
Former	108 (23.2)	105 (38.2)	9 (28.1)	0.867	0.001*	0.014	
Current	49 (10.5)	30 (10.9)	4 (12.5)	0.212	0.173	0.118	
COPD	33 (7.1)	36 (13.1)	2 (6.3)	0.004*	0.775	0.165	
Chronic CHF							
Chronic	21 (4.5)	26 (9.5)	1 (3.1)	0.008	0.746	0.202	
Acute	23 (4.9)	10 (3.6)	2 (6.3)	0.408	0.386	0.01	
CAD	120 (25.8)	57 (20.7)	6 (18.8)	0.134	0.368	0.735	
CKD (eGFR < 60)	93 (20.0)	67 (24.4)	4 (12.5)	0.102	0.283	0.106	
Bicuspid Valve	146 (31.3)	29 (10.5)	5 (15.6)	<0.001*	0.039	0.478	
HTN	329 (70.6)	212 (77.1)	17 (53.1)	0.055	0.052	0.001	
Afib	44 (9.4)	26 (9.5)	2 (6.3)	0.992	0.551	0.488	
Pre-op Ejection Fraction (EF<55)	183 (39.3)	91 (33.1)	10 (31.3)	<0.001*	0.015	0.433	
Diagnosis, n (%)							
Aortic Dissection	92 (19.7)	97 (35.3)	11 (34.4)	<0.001*	0.015	0.987	
Aortic Aneurysm	321 (68.9)	163 (59.3)	20 (62.5)	0.005	0.226	0.738	
Infective Endocarditis	6 (1.3)	4 (1.5)	0 (0.0)	0.856	0.521	0.471	
Aortic Value-Related	33 (7.1)	4 (1.5)	1 (3.1)	<0.001*	0.388	0.73	
Rupture	1 (0.2)	0 (0.0)	0 (0.0)	0.441	0.775	-	
Intraoperative, minutes							
Aortic Cross Clamp Time	94±40	116 [76-135]	113±54	<0.001*	0.019	0.905	
Minimum Temperature	28 [25-28]	18 [18-25]	21±5	<0.001*	< 0.001*	<0.001*	
CPB	137 [107-167]	173±57	182±62	< 0.001*	0.004*	0.847	

Table 2: Short Term Follow-Up												
	Unweighted					Inverse Probability Weighting						
	Hemiarch	Total	Zone 2	Hemiarch V Total	Hemiarch V Zone 2	Total V Zone 2	Hemiarch/Total	Hemiarch/Zone 2	Total/Zone 2	Hemiarch V Total	Hemiarch V Zone 2	Total V Zone 2
	466	275	32		p-value -		Potential Outcome Means			-	n.value -	
Length of Stay, days (median [IQR])	9 [6-15]	13 [7-20]	11 [6-16]	<0.001*	0.414	0.401	13.6/13.2	13.2/13.9	15.3/14.8	0.874	0.790	0.307
In-hospital Complications, n (%)												
Any Events	129 (27.7)	89 (32.4)	12 (37.5)	<0.001*	0.378	0.576	33.1/41.6	30.2/43.4	41.0/42.9	0.078	0.378	0.833
Mortality	23 (4.9)	15 (5.5)	1 (3.1)	0.309	0.085	0.060	14.5/15.7	14.0/9.4	15.6/11.9	0.726	0.602	0.730
Stroke	35 (7.5)	16 (5.8)	3 (9.4)	0.633	0.552	0.959	7.1/10.1	6.8/7.0	9.5/5.0	0.294	0.967	0.181
Reoperation for Bleeding	37 (7.9)	22 (8.0)	0 (0.0)	0.848	0.099	0.059	8.3/8.6	7.8/0.0	1.0/-	0.907	<0.001*	-
ARF	58 (12.4)	33 (12.0)	3 (9.4)	0.737	0.721	0.441	12.5/13.0	11.5/3.8	14.7/8.8	0.877	0.003	0.376
Mediastinitis	4 (0.9)	2 (0.7)	0 (0.0)	0.886	0.566	0.557	9.9/9.2	1.0/-	1.0/-	0.933	-	
Respiratory Failure	64 (13.7)	53 (19.3)	11 (34.4)	0.026	<0.001*	0.217	12.1/22.9	11.3/34.0	25.7/14.8	0.003*	0.098	0.667

anges. Categorical variables were displayed with numbers and percenta normally distributed and with Mann-Whitney U test for non-normal distrib oles were compared with Student t-test when ution. Categorical variables were compared using the Pearson's chi-squared tes otential outcome means were shown as percentages for categorical variables and numerical values for continuous. Pair ance level = 0.05/3=0.0167) total and zone 2 groups were perforn

METHODS

 Single-center retrospective study (New York Presbyterian/Columbia University Aortic Center)

• Treatment groups included patients, 18 years or older, who underwent hemiarch, zone 2, and total arch repairs with concomitant ascending aorta replacements for all indications between July 2005 through December 2019

•All statistical analyses were performed with R version 9.4 and Stata/SE 16. Inverse Probability Weighting (IPW) adjusted for potential confounding bias.

Main Finding

Although further studies with a more expansive zone 2 cohort should be considered, our preliminary research suggests zone 2 aortic replacements serves as an viable treatment option.

DISCUSSION

Measured outcomes after application of IPW for each pairwise comparison indicates no significant difference in our primary endpoint -- the inability to achieve in-hospital "uneventful recovery", a combined metric consisting of in-hospital mortality, stroke, reoperation for bleeding, respiratory failure, acute renal failure (ARF), and deep sternal wound infection.

Similarly, analysis of secondary endpoints revealed comparable levels of stroke, mortality, and length of postoperative hospitalization in all three treatment groups.

REFERENCES

Appoo JJ, Gregory AJ, Fichadiya A, Kotha VK, Herget EJ. Zone 2 arch replacement and staged thoracic endovascular aortic repair for acute type A aortic dissection. Ann Thorac Surg 2017:104:e299-301

G. Zanotti, T.B. Reece, M. Aftab. Aortic Arch pathology: surgical options for the aortic arch replacement Cardiol Clin, 35 (2017), pp. 367-385

Funded by: Program for Education in Global and Population Health, Vagelos College of Phyisicians and Surgeons, Columbia University

Contact Info: Adedeji Adeniyi | Email: ama2329@cumc.columbia.edu