Vaccinology 101
Philip LaRussa, MD
June 1, 2020

Course Number PB-VI01P: Development of a Vaccine During a Pandemic
Course Directors: Philip LaRussa, MD and Lawrence Stanberry MD, PhD
Principles of Vaccination

• Antigen (Immunogen)
 • A live or inactivated substance (e.g., protein, polysaccharide) capable of producing a (protective) immune response

• Antibody
 • Protein molecules (immunoglobulin) produced by B lymphocytes to help process and/or eliminate an antigen

• Cell-mediated response
 • e.g. T-helper or cytotoxic T cell response
Principles of Vaccination

• Active Immunity
 • Protection produced by the person's own immune system in response to infection, exposure or vaccination
 • Usually permanent, but may or may not be complete

• Passive Immunity
 • Protection transferred from another person or animal
 • Temporary protection that wanes with time
Vaccination

• Active immunity produced by a vaccine
 • Immunity and immunologic memory similar to natural infection but without risk or much lower risk of clinical disease
Passive Immunity

• Transfer of antibody produced by one human/animal to another person or animal
• Sometimes called Antiserum
• Temporary protection
• Transplacental maternal antibody is the most important source in infancy
Sources of Passive Immunity

• Almost all blood or blood products
• Pooled human antibody (immune globulin)
• Human hyperimmune globulin
• Heterologous hyperimmune serum (antitoxin) from another animal species
• Monoclonal antibody
Immunization Strategy

• Prevention of infection vs. symptoms:
 • HIV vs. Measles
• Temporary vs. Long-lasting Immunity
 • Passive protection: specific antibodies
 • Immediate Protection, but $t_{1/2} \approx 27$ days:
 • Antitoxins
 • Antibodies to Tetanus, Diphtheria, Botulinum toxins
 • Hyperimmune antisera to specific pathogens:
 • Hepatitis B, Varicella, Rabies, RSV
 • Pooled Human Immune Globulin: not specific
 • Immune Serum Globulin & Intravenous IG
 • Active: vaccination (Longer lag time, but long-lasting)
 • Active - Passive (HBIG+Hep B vac.; RIG+Rabies vac.)
• Pre-exposure (Polio) vs. Post-exposure (Rabies)
Target Populations for Immunization

• High-Risk Groups Only (ex: Rabies, Varicella in some countries)
 • No effect on overall disease burden in the general population
 • Vaccine must be highly effective
 • Must be able to reach all members of high-risk group
 • Less expensive in the short term
Target Populations for Immunization

• Universal Immunization (Polio, Rubella, Varicella in USA)
 • Diminishes overall disease burden in general population
 • Pre-emptive immunization of healthy individuals who eventually become high-risk
 • Decreases risk of exposure for everyone
 • Planned access to target population
 • More cost-effective in long term
 • Requires extremely safe vaccines
Immunization of High Risk Groups

• Travel
 • Japanese Encephalitis, Yellow fever, Typhoid....

• Occupation:
 • Hepatitis B, Rabies, Anthrax, Plague, Rubella & Varicella

• Age, illness, immunosuppression
 • High-risk for invasive pneumococcal disease:
 • Children < 6 years (Pneumococcal conjugate vaccine)
 • Elderly, high-risk kids ≥ 6 years (Pneumococcal polysaccharide vaccine)
 • Influenza: infants, elderly, or cardiac or pulmonary disease, pregnancy, obesity....
 • Severe varicella (live attenuated varicella vaccine):
 • leukemic children & HIV-infected kids with CD4 ≤ 15%
 • HIV-infected children (Inactivated polio vaccine)
Administration

• Route
 • Mimic route of natural infection: Oral polio, Live attenuated Intranasal Influenza vaccines
 • Parenteral (Intramuscular, subcutaneous)

• Age at immunization
 • Age distribution of natural infection:
 • In pre-vaccine era: ≥ 60% of invasive H.influenzae type b infections occurred at ≤ 18 months of age
 • Age-dependent immune response:
 • Polysaccaride antigens (HIB, Pneumo & Meningococcus) are poorly immunogenic at ≤ 2 years of age
 • Ability to access population to be immunized:
 • Hepatitis B & rubella vaccines in infants vs. adolescents
Immune Response to Immunization

• Primary response
 • 1st exposure to the antigen
 • 7-10 day lag time between exposure and production of antibody and cell-mediated responses
 • Initial antibody response is IgM, later switch to IgG
 • Establish populations of memory T & B cells

• Secondary response
 • After a repeat exposure to the antigen (or pathogen)
 • Shortened lag time between exposure and production of antibody and cell-mediated responses
 • Antibody response is almost all IgG
 • Rapid expansion/ Memory T & B cell populations
What Is Immunologic Memory? B cell Clonal Expansion

Fig. 1.13, Immunology, 8th ed, Male, et. al. 2013
Factors That Influence Vaccine Effectiveness

- HLA types
- Physiologic condition of vaccinee
 - Age, nutritional status, immune status
- Type of vaccine
 - Live attenuated vs. killed
- Dose and route of administration
- Adjuvants
Influence of Host Genetic Factors on Response to Vaccination

• 5–10% of healthy subjects do not mount an antibody response (anti-HBs) to Hepatitis b Vaccine

• Non-response is associated with different HLA-DR alleles and impaired Th(1?) cell response:
 • increased incidence of non-responsiveness in subjects with HLA-DR3(+) or -DR7(+) haplotypes
Current Technology

• **Inactivated whole organism:**
 • Whole cell Pertussis, eIPV, Hepatitis A, Rabies, Influenza (detergent-treated), plasma-derived Hepatitis B (no longer available in US)

• **Live organism from a related or different species:**
 • Vaccinia, Bacille Calmette-Guerin (BCG, also attenuated by serial passage)

• **Live attenuated organism:**
 • Oral Polio, Measles, Mumps, Rubella, Varicella, Cold-adapted Influenza, Yellow fever
 • Attenuated by passage in tissue culture

• **Toxoids:** inactivated Diphtheria, Tetanus toxins

• **Combination Vaccines:**
Current Technology

• Specific subunit/antigen(s), extracted, purified:
 • Acellular Pertussis Vaccines:
 • PT (Pertussis toxoid), FHA (filamentous hemagglutinin), Pertactin, Agglutinogens
 • Polysaccharides (T-cell independent antigens):
 • Hæmophilus (no longer available), Meningococcus, Pneumococcus
 • Influenza surface glycoproteins (HA, NA)

• Conjugated antigens (T-cell dependent):
 • HiB: PRP-D, PRP-T, PRP-OMP, HBoC (crm197)
 • Pneumococcal Conjugate-13 valent: CRM 197- 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 23F
 • Meningococcus A, C, W-135 & Y conjugated to diphtheria toxoid
Current Technology

• Recombinant antigens:
 • HBsAg/ yeast
 • Meningococcus B:
 • Bexsero: recombinant proteins adhesin A, Heparin Binding Antigen, factor H binding protein, Outer Membrane Vesicles, aluminum hydroxide
 • Trumemba: recombinant lipidated factor H binding protein variants from serogroup B, subfamilies A & B, aluminum phosphate
Current Technology

• Virus-like particles:
 • HPV Quadrivalent Vaccine:
 • Major capsid proteins of human papillomavirus (HPV) serotypes 6, 11, 16 & 18 expressed in eucaryotic cells
 • 99-100% vs HPV 16/18 related Cervical Intraepithelial Neoplasia (CIN) 2/3 in uninfected women
 • 27% efficacy in women who are recently infected
 • No efficacy in those with established infection
 • FDA-approved for use in females 9-26 years in 2006
 • Males and a bivalent 16/18 vaccine later on
 • Younger age groups to follow
Rotavirus Vaccine

• RotaTeq Vaccine Study:
 • Pentavalent bovine-human reassortant vaccine
 • VP7 genes of serotypes G1, G2, G3, G4 and P-type P1A)
 • 70,000 placebo-controlled study:
 • 70% efficacy vs. any vaccine-serotype-related disease
 • 98% vs. severe disease
 • 85, 94, 96% ↓ in office visits, ED & hospitalizations
 • Intussusception:
 • 6 & 5 cases in the overall vaccine & placebo groups
 • 0 & 1 in vaccine & placebo groups after the 1st dose
 • 3 doses at 2, 4, & 6 months of age
 • Added to the 2007 Recommended childhood schedule
Zoster Vaccine Recombinant Adjuvated (Shingrix)

• Varicella virus recombinant gE antigen component + AS01B adjuvant suspension

• FDA-approved on Oct. 20, 2017

• Indication: adults ≥50 years of age including all who received prior live attenuated Zoster vaccine (Zostavax)

• 2 doses, with 2nd dose 2-6 months after the 1st
Adjuvants

- Non-pathogen related additives that improve immunogenicity
- Aluminum salts are most common
 - Hepatitis b vaccine, tetanus and diphtheria toxoids
- Mechanisms of action?
 - Formation of an antigen depot at the inoculation site
 - Water/oil emulsions & alum
 - Mobilization of Th cell response:
 - Protein carriers, polyA/polyU
 - Up-regulation of Ig receptors on B cells:
 - B-cell mitogens, antigen polymerizing agents
 - Increased uptake by Antigen-presenting cells:
 - MDP (muramyl dipeptide) derivatives, LPS, Lipid A
 - Cytokine induction & secretion
Impact of Vaccines in the 20th & 21st Centuries

Comparison of 20th Century Annual Morbidity & Current Morbidity

<table>
<thead>
<tr>
<th>Disease</th>
<th>20th Century Annual Morbidity*</th>
<th>2017 Reported Cases†</th>
<th>% Decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smallpox</td>
<td>29,005</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>Diphtheria</td>
<td>21,053</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>Pertussis</td>
<td>200,752</td>
<td>15,808</td>
<td>92%</td>
</tr>
<tr>
<td>Tetanus</td>
<td>580</td>
<td>31</td>
<td>95%</td>
</tr>
<tr>
<td>Polio (paralytic)</td>
<td>16,316</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>Measles</td>
<td>530,217</td>
<td>122</td>
<td>>99%</td>
</tr>
<tr>
<td>Mumps</td>
<td>162,344</td>
<td>5,629</td>
<td>97%</td>
</tr>
<tr>
<td>Rubella</td>
<td>47,745</td>
<td>9</td>
<td>>99%</td>
</tr>
<tr>
<td>CRS</td>
<td>152</td>
<td>2</td>
<td>99%</td>
</tr>
<tr>
<td>Haemophilus influenzae</td>
<td>20,000 (est.)</td>
<td>22§</td>
<td>>99%</td>
</tr>
</tbody>
</table>

* JAMA. 2007;298(18):2155-2163
§ *Haemophilus influenzae* type b (Hib) <5 years of age. An additional 11 cases of Hib are estimated to have occurred among the 237 notifications of Hi (<5 years of age) with unknown serotype.
<table>
<thead>
<tr>
<th>Disease</th>
<th>Pre-Vaccine Era Annual Estimate</th>
<th>2015 Estimate (unless otherwise specified)</th>
<th>% Decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatitis A</td>
<td>117,333*</td>
<td>2,500†</td>
<td>98%</td>
</tr>
<tr>
<td>Hepatitis B (acute)</td>
<td>66,232*</td>
<td>19,200†</td>
<td>71%</td>
</tr>
<tr>
<td>Pneumococcus (invasive)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All ages</td>
<td>63,067*</td>
<td>29,000‡</td>
<td>54%</td>
</tr>
<tr>
<td><5 years of age</td>
<td>16,069*</td>
<td>1,800‡</td>
<td>89%</td>
</tr>
<tr>
<td>Rotavirus (hospitalizations <3 years of age)</td>
<td>62,500‡</td>
<td>11,250§</td>
<td>82%</td>
</tr>
<tr>
<td>Varicella</td>
<td>4,085,120*</td>
<td>126,639††</td>
<td>97%</td>
</tr>
</tbody>
</table>

* JAMA. 2007;298(18):2155-2163
† CDC. Viral Hepatitis Surveillance – United States, 2014
¶ CDC. Unpublished. Active Bacterial Core surveillance. 2015
‡ CDC. MMWR. February 6, 2009 / 58(RR02); 1-25
§ New Vaccine Surveillance Network 2015 data (unpublished); U.S. rotavirus disease now has biennial pattern
†† CDC. MMWR. November 25, 2016 / 65(46);1306-1321 (2015 final data)