Vaccinology 101 Philip LaRussa, MD June 1, 2020

Course Number PB-VI01P: Development of a Vaccine During a Pandemic Course Directors: Philip LaRussa, MD and Lawrence Stanberry MD, PhD

Principles of Vaccination

- Antigen (Immunogen)
 - A live or inactivated substance (e.g., protein, polysaccharide) capable of producing a (protective) immune response
- Antibody
 - Protein molecules (immunoglobulin) produced by B lymphocytes to help process and/or eliminate an antigen
- Cell-mediated response
 - e.g. T-helper or cytotoxic T cell response

Principles of Vaccination

- Active Immunity
 - Protection produced by the person's own immune system in response to infection, exposure or vaccination
 - Usually permanent, but may or may not be complete
- Passive Immunity
 - Protection transferred from another person or animal
 - Temporary protection that wanes with time

Vaccination

- Active immunity produced by a vaccine
 - Immunity and immunologic memory similar to natural infection but without risk or much lower risk of clinical disease

Passive Immunity

- Transfer of antibody produced by one human/animal to another person or animal
- Sometimes called Antiserum
- Temporary protection
- Transplacental maternal antibody is the most important source in infancy

Sources of Passive Immunity

- Almost all blood or blood products
- Pooled human antibody (immune globulin)
- Human hyperimmune globulin
- Heterologous hyperimmune serum (antitoxin) from another animal species
- Monoclonal antibody

Immunization Strategy

- Prevention of infection vs. symptoms:
 - HIV vs. Measles
- Temporary vs. Long-lasting Immunity
 - Passive protection: specific antibodies
 - Immediate Protection, but $t_{1/2} \approx 27$ days:
 - Antitoxins
 - Antibodies to Tetanus, Diphtheria, Botulinum toxins
 - Hyperimmune antisera to specific pathogens:
 - Hepatitis B, Varicella, Rabies, RSV
 - Pooled Human Immune Globulin: not specific
 - Immune Serum Globulin & Intravenous IG
 - Active: vaccination (Longer lag time, but long-lasting)
 - Active Passive (HBIG+Hep B vac.; RIG+Rabies vac.)
- Pre-exposure (Polio) vs. Post-exposure (Rabies)

Target Populations for Immunization

- High-Risk Groups Only (ex: Rabies, Varicella in some countries)
 - No effect on overall disease burden in the general population
 - Vaccine must be highly effective
 - Must be able to reach all members of high-risk group
 - Less expensive in the short term

Target Populations for Immunization

- Universal Immunization (Polio, Rubella, Varicella in USA)
 - Diminishes overall disease burden in general population
 - Pre-emptive immunization of healthy individuals who eventually become high-risk
 - Decreases risk of exposure for everyone
 - Planned access to target population
 - More cost-effective in long term
 - Requires extremely safe vaccines

Immunization of High Risk Groups

- Travel
 - Japanese Encephalitis, Yellow fever, Typhoid....
- Occupation:
 - Hepatitis B, Rabies, Anthrax, Plague, Rubella & Varicella
- Age, illness, immunosuppression
 - High-risk for invasive pneumoccocal disease:
 - Children < 6 years (Pneumococcal conjugate vaccine)
 - Elderly, high-risk kids ≥ 6 years (Pneumococcal polysaccharide vaccine)
 - Influenza: infants, elderly, or cardiac or pulmonary disease, pregnancy, obesity....
 - Severe varicella (live attenuated varicella vaccine):
 - leukemic children & HIV-infected kids with CD4 \leq 15%
 - HIV-infected children (Inactivated polio vaccine)

Administration

- Route
 - Mimic route of natural infection: Oral polio, Live attenuated Intranasal Influenza vaccines
 - Parenteral (Intramuscular, subcutaneous)
- Age at immunization
 - Age distribution of natural infection:
 - In pre-vaccine era: ≥ 60% of invasive H.influenzae type b infections occurred at ≤ 18 months of age
 - Age-dependent immune response:
 - Polysaccaride antigens (HIB, Pneumo & Meningococcus) are poorly immunogenic at ≤ 2 years of age
 - Ability to access population to be immunized:
 - Hepatitis B & rubella vaccines in infants vs. adolescents

Immune Response to Immunization

- Primary response
 - 1st exposure to the antigen
 - 7-10 day lag time between exposure and production of antibody and cellmediated responses
 - Initial antibody response is IgM, later switch to IgG
 - Establish populations of memory T & B cells
- Secondary response
 - After a repeat exposure to the antigen (or pathogen)
 - Shortened lag time between exposure and production of antibody and cellmediated responses
 - Antibody response is almost all IgG
 - Rapid expansion/ Memory T & B cell populations

What Is Immunologic Memory? B cell Clonal Expansion

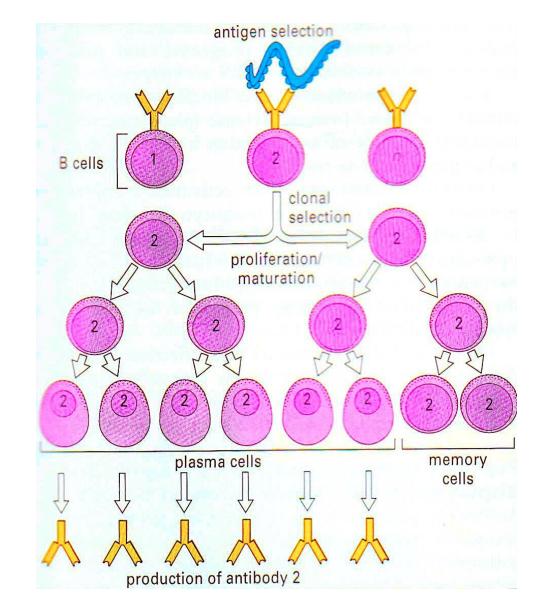


Fig. 1.13, Immunology, 8th ed, Male, et. al. 2013

Factors That Influence Vaccine Effectiveness

- HLA types
- Physiologic condition of vaccinee
 - Age, nutritional status, immune status
- Type of vaccine
 - Live attenuated vs. killed
- Dose and route of administration
- Adjuvants

Influence of Host Genetic Factors on Response to Vaccination

- 5–10% of healthy subjects do not mount an antibody response (anti-HBs) to Hepatitis b Vaccine
- Non-response is associated with different HLA-DR alleles and impaired Th(1?) cell response:
 - increased incidence of non-responsiveness in subjects with HLA-DR3(+) or -DR7(+) haplotypes

- Inactivated whole organism:
 - Whole cell Pertussis, eIPV, Hepatitis A, Rabies, Influenza(detergenttreated), plasma-derived Hepatitis B (no longer available in US)
- Live organism from a related or different species:
 - Vaccinia, Bacille Calmette-Guerin (BCG, also attenuated by serial passage)
- Live attenuated organism:
 - Oral Polio, Measles, Mumps, Rubella, Varicella, Cold-adapted Influenza, Yellow fever
 - Attenuated by passage in tissue culture
- Toxoids: inactivated Diphtheria, Tetanus toxins
- Combination Vaccines:
 - DTP, MMRV, DTP-HIB, HIB-Hep.B, DTaP- Hep.B-IPV

- Specific subunit/antigen(s), extracted, purified:
 - Acellular Pertussis Vaccines:
 - PT (Pertussis toxoid), FHA (filamentous hemagglutinin), Pertactin, Agglutinogens
 - Polysaccarides (T-cell independent antigens):
 - Hæmophilus (no longer available), Meningococcus, Pneumococcus
 - Influenza surface glycoproteins (HA, NA)

- Conjugated antigens (T-cell dependent):
 - **HiB:** PRP-D, PRP-T, PRP-OMP, HBoC (crm197)
 - Pneumococcal Conjugate-13 valent: CRM 197- 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 23F
 - Meningococcus A, C, W-135 & Y conjugated to diphtheria toxoid

- Recombinant antigens:
 - HBsAg/ yeast
 - Meningococcus B:
 - Bexsero: recombinant proteins adhesin A, Heparin Binding Antigen, factor H binding protein, Outer Membrane Vesicles, aluminum hydroxide
 - Trumemba: recombinant lipidated factor H binding protein variants from serogroup B, subfamilies A & B, aluminum phosphate

• Virus-like particles:

- HPV Quadrivalent Vaccine:
 - Major capsid proteins of human papillomavirus(HPV) serotypes
 6, 11, 16 & 18 expressed in eucaryotic cells
 - 99-100% vs HPV 16/18 related Cervical Intraepithelial Neoplasia (CIN) 2/3 in uninfected women
 - 27% efficacy in women who are recently infected
 - No efficacy in those with established infection
 - FDA-approved for use in females 9-26 years in 2006
 - Males and a bivalent 16/18 vaccine later on
 - Younger age groups to follow

Rotavirus Vaccine

- RotaTeq Vaccine Study:
 - Pentavalent bovine-human reassortant vaccine
 - VP7 genes of serotypes G1, G2, G3, G4 and P-type P1A)
 - 70,000 placebo-controlled study:
 - 70% efficacy vs. any vaccine-serotype-related disease
 - 98% vs. severe disease
 - 85, 94, 96% \downarrow in office visits, ED & hospitalizations
 - Intussuception:
 - 6 & 5 cases in the overall vaccine & placebo groups
 - 0 & 1 in vaccine & placebo groups after the 1st dose
 - 3 doses at 2, 4, & 6 months of age
 - Added to the 2007 Recommended childhood schedule

Zoster Vaccine Recombinant Adjuvated (Shingrix)

- Varicella virus recombinant gE antigen component + AS01B adjuvant suspension
- FDA-approved on Oct. 20, 2017
- Indication: adults ≥50 years of age including all who received prior live attenuated Zoster vaccine (Zostavax)
- 2 doses, with 2nd dose 2-6 months after the 1st

Adjuvants

- Non-pathogen related additives that improve immunogenicity
- Aluminum salts are most common
 - Hepatitis b vaccine, tetanus and diphtheria toxoids
- Mechanisms of action?
 - Formation of an antigen depot at the inoculation site
 - Water/oil emulsions & alum
 - Mobilization of Th cell response:
 - Protein carriers, polyA/polyU
 - Up-regulation of Ig receptors on B cells:
 - B-cell mitogens, antigen polymerizing agents
 - Increased uptake by Antigen-presenting cells:
 - MDP (muramyl dipeptide) derivatives, LPS, Lipid A
 - Cytokine induction & secretion

Impact of Vaccines in the 20th & 21st Centuries

Comparison of 20 Century Annual Morbiuity & Current Morbiuity				
Disease	20 th Century Annual Morbidity*	2017 Reported Cases [†]	% Decrease	
Smallpox	29,005	0	100%	
Diphtheria	21,053	0	100%	
Pertussis	200,752	15,808	92%	
Tetanus	580	31	95%	
Polio (paralytic)	16,316	0	100%	
Measles	530,217	122	>99%	
Mumps	162,344	5,629	97%	
Rubella	47,745	9	>99%	
CRS	152	2	99%	
Haemophilus influenzae	20,000 (est.)	22 [§]	>99%	

Comparison of 20th Century Annual Morbidity & Current Morbidity

* JAMA. 2007;298(18):2155-2163

† CDC. National Notifiable Diseases Surveillance System, Week 52, 2017 Weekly Tables of Infectious Disease Data. Atlanta, GA. CDC Division of Health Informatics and Surveillance, 2018. Available at: www.cdc.gov/nndss/infectious-tables.html. Accessed on January 4, 2018.

§ Haemophilus influenzae type b (Hib) <5 years of age. An additional 11 cases of Hib are estimated to have occurred among the 237 notifications of Hi (<5 years of age) with unknown serotype.</p>

Comparison of Pre-Vaccine Era Estimated Annual Morbidity with Current Estimate

Disease	Pre-Vaccine Era Annual Estimate	2015 Estimate (unless otherwise specified)	% Decrease
Hepatitis A	117,333*	2,500 [†]	98%
Hepatitis B (acute)	66,232 [*]	19,200 [†]	71%
Pneumococcus (invasive) All ages <5 years of age	63,067* 16,069*	29,000 [¶] 1,800 [¶]	54% 89%
Rotavirus (hospitalizations <3 years of age)	62,500 [‡]	11,250 [§]	82%
Varicella	4,085,120 [*]	126,639 ^{††}	97%

* JAMA. 2007;298(18):2155-2163

† CDC. Viral Hepatitis Surveillance – United States, 2014

¶ CDC. Unpublished. Active Bacterial Core surveillance. 2015

‡ CDC. MMWR. February 6, 2009 / 58(RR02); 1-25

§ New Vaccine Surveillance Network 2015 data (unpublished); U.S. rotavirus disease now has biennial pattern

†† CDC. MMWR. November 25, 2016 / 65(46);1306-1321 (2015 final data)